Skip to content

User Input

Suppose we perform a simple test using the inputs below, which should take less than 1 minute in the run_experiment.ipynb file:

# 1. RUN CONFIG
%run "../config/config.ipynb"

# 2. SETUP FORECAST PROBLEM AND MODEL SPECIFICATION (USER TO INPUT)
# FORECAST PROBLEM
dataset = ds0
forecast_horizon = fh1 # fh1 = 30 minutes ahead, fh9 = 2 days ahead
# MODEL SPECIFICATION
model_name = m6
hyperparameter_no = 'hp1'

# 3. RUN EXPERIMENT
run_experiment(dataset, forecast_horizon, model_name, hyperparameter_no)

Output

The tool generates the following outputs.

Name Type Description
E00001_cv_test/ Folder Time series of observation, forecast, and residual for each cross-validation split
E00001_cv_train/ Folder Time series of observation, forecast, and residual for each cross-validation split
E00001_cv1_plots/ Folder Plots for the first cross-validation fold: time plot, scatter plot, residual plot, histogram
E00001_models/ Folder Saved models used or generated during the experiment
E00001_a1_experiment_result.csv File Accuracy (cross-validated test n-RMSE), stability, and training time
E00001_a2_hyperparameter.csv File Hyperparameters used for each model
E00001_a3_cross_validation_result.csv File Detailed results for each cross-validation split

The file a1_experiment_result.csv summarises the results, including the cross validated nRMSE & its standard deviation

experiment_no exp_date dataset_no dataset dataset_freq_min dataset_length_week forecast_horizon_min train_pct test_pct model_no hyperparameter_no model_name hyperparameter runtime_ms train_RMSE train_RMSE_stddev test_RMSE test_RMSE_stddev train_nRMSE train_nRMSE_stddev test_nRMSE test_nRMSE_stddev
E00001 15/09/2025 ds0 test 30 10 30 0.9 0.1 m6 hp1 m6_lr_hp1 num_features: 50 201.769185 17.33 0.206421 17.7066 1.82726 2.98206 0.03552 3.04686 0.31443

The file a3_cross_validation_result.csv provides the detailed cross-validation (CV) results, from CV1 to CV10.

Experiment Metrics

# runtime_ms train_MBE train_MAE train_RMSE train_MAPE train_MASE train_fskill train_R2 test_MBE test_MAE test_RMSE test_MAPE test_MASE test_fskill test_R2 train_nRMSE test_nRMSE
1 193.2564 0 12.208 17.122 27.366 0.422 55.471 0.988 -0.1804 13.278 19.679 22.808 0.459 43.531 0.981 2.9463 3.3863
2 224.8719 0 12.337 17.495 27.347 0.423 54.817 0.988 -0.1443 12.332 16.346 18.905 0.423 49.006 0.987 3.0105 2.8127
3 251.0867 0 12.361 17.477 22.314 0.433 54.031 0.987 0.3318 11.965 16.321 60.409 0.419 58.022 0.989 3.0074 2.8084
4 174.1974 0 12.401 17.573 28.635 0.434 53.775 0.987 -0.8563 11.654 15.427 13.623 0.408 60.346 0.992 3.0239 2.6546
5 232.7249 0 12.281 17.020 22.091 0.435 54.565 0.988 1.2783 12.536 20.375 70.615 0.444 53.147 0.986 2.9287 3.5060
6 173.2767 0 12.322 17.467 28.530 0.436 53.491 0.987 -0.6225 12.436 16.567 12.690 0.440 61.224 0.991 3.0056 2.8508
7 233.0346 0 12.171 17.004 26.500 0.427 55.250 0.988 0.8754 13.685 20.516 27.756 0.480 47.485 0.981 2.9260 3.5303
8 212.3849 0 12.286 17.390 26.759 0.428 54.516 0.988 -0.7814 12.809 17.191 23.091 0.447 53.467 0.985 2.9924 2.9581
9 157.8457 0 12.330 17.417 28.242 0.435 53.965 0.988 -1.0170 12.308 16.923 10.919 0.434 58.189 0.989 2.9970 2.9120
10 165.0126 0 12.269 17.335 28.311 0.421 55.265 0.988 1.0148 12.840 17.721 11.193 0.441 44.110 0.979 2.9829 3.0493
mean 201.7692 0 12.2966 17.330 26.6095 0.4294 54.5146 0.9877 -0.0102 12.5843 17.7066 27.2009 0.4395 52.8527 0.986 2.9821 3.0469
stddev 33.2319 0 0.0693 0.2064 2.4352 0.00591 0.6866 0.00048 0.8405 0.5983 1.8273 21.106 0.02059 6.5729 0.00447 0.03552 0.31443

Below are some plots on the test set:

Time Plot Scatter Plot
Figure 1: Observation vs Forecast (Time Plot) Figure 2: Observation vs Forecast (Scatter Plot)
Residual Time Plot Residual Histogram
Figure 3: Residuals Over Time Figure 4: Residual Histogram